Description: A lemma used to prove a weak version of the axiom of substitution ax-12 . (Temporary comment: The general statement that ax12wlem proves.) (Contributed by BJ, 20-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-ax12wlem.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | bj-ax12wlem | |- ( ph -> ( ps -> A. x ( ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12wlem.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | ax-5 | |- ( ch -> A. x ch ) |
|
| 3 | 1 2 | bj-ax12i | |- ( ph -> ( ps -> A. x ( ph -> ps ) ) ) |