Description: Proof of axc16g from { ax-1 -- ax-7 , axc16 }. (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axc16g16 | |- ( A. x x = y -> ( ph -> A. z ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aevlem | |- ( A. x x = y -> A. z z = t ) |
|
2 | axc16 | |- ( A. z z = t -> ( ph -> A. z ph ) ) |
|
3 | 1 2 | syl | |- ( A. x x = y -> ( ph -> A. z ph ) ) |