Description: Proof of axc16g from { ax-1 -- ax-7 , axc16 }. (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-axc16g16 | |- ( A. x x = y -> ( ph -> A. z ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aevlem | |- ( A. x x = y -> A. z z = t ) | |
| 2 | axc16 | |- ( A. z z = t -> ( ph -> A. z ph ) ) | |
| 3 | 1 2 | syl | |- ( A. x x = y -> ( ph -> A. z ph ) ) |