Description: Proof of axc16g from { ax-1 -- ax-7 , axc16 }. (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-axc16g16 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑧 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aevlem | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑧 = 𝑡 ) | |
2 | axc16 | ⊢ ( ∀ 𝑧 𝑧 = 𝑡 → ( 𝜑 → ∀ 𝑧 𝜑 ) ) | |
3 | 1 2 | syl | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑧 𝜑 ) ) |