Metamath Proof Explorer


Theorem bj-cmnssmndel

Description: Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd , which relies on iscmn . (Contributed by BJ, 9-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-cmnssmndel
|- ( A e. CMnd -> A e. Mnd )

Proof

Step Hyp Ref Expression
1 bj-cmnssmnd
 |-  CMnd C_ Mnd
2 1 sseli
 |-  ( A e. CMnd -> A e. Mnd )