Metamath Proof Explorer


Theorem bj-cmnssmndel

Description: Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd , which relies on iscmn . (Contributed by BJ, 9-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-cmnssmndel ( 𝐴 ∈ CMnd → 𝐴 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 bj-cmnssmnd CMnd ⊆ Mnd
2 1 sseli ( 𝐴 ∈ CMnd → 𝐴 ∈ Mnd )