| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-endval.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
bj-endval.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 3 |
1 2
|
bj-endbase |
|- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) |
| 4 |
3
|
eqcomd |
|- ( ph -> ( X ( Hom ` C ) X ) = ( Base ` ( ( End ` C ) ` X ) ) ) |
| 5 |
1 2
|
bj-endcomp |
|- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) |
| 6 |
5
|
eqcomd |
|- ( ph -> ( <. X , X >. ( comp ` C ) X ) = ( +g ` ( ( End ` C ) ` X ) ) ) |
| 7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 10 |
1
|
3ad2ant1 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) |
| 11 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) |
| 12 |
|
simp3 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) |
| 13 |
|
simp2 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
| 14 |
7 8 9 10 11 11 11 12 13
|
catcocl |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) y ) e. ( X ( Hom ` C ) X ) ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> C e. Cat ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> X e. ( Base ` C ) ) |
| 17 |
|
simpr |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) |
| 18 |
|
simp3 |
|- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> z e. ( X ( Hom ` C ) X ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> z e. ( X ( Hom ` C ) X ) ) |
| 20 |
|
simp2 |
|- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) |
| 21 |
17 20
|
syl |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> y e. ( X ( Hom ` C ) X ) ) |
| 22 |
|
simp1 |
|- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
| 23 |
17 22
|
syl |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> x e. ( X ( Hom ` C ) X ) ) |
| 24 |
7 8 9 15 16 16 16 19 21 16 23
|
catass |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( ( x ( <. X , X >. ( comp ` C ) X ) y ) ( <. X , X >. ( comp ` C ) X ) z ) = ( x ( <. X , X >. ( comp ` C ) X ) ( y ( <. X , X >. ( comp ` C ) X ) z ) ) ) |
| 25 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 26 |
7 8 25 1 2
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 27 |
1
|
adantr |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) |
| 28 |
2
|
adantr |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
| 30 |
7 8 25 27 28 9 28 29
|
catlid |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) x ) = x ) |
| 31 |
7 8 25 27 28 9 28 29
|
catrid |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) = x ) |
| 32 |
4 6 14 24 26 30 31
|
ismndd |
|- ( ph -> ( ( End ` C ) ` X ) e. Mnd ) |