Metamath Proof Explorer


Theorem bj-evalval

Description: Value of the evaluation at a class. (Closed form of strfvnd and strfvn ). (Contributed by NM, 9-Sep-2011) (Revised by Mario Carneiro, 15-Nov-2014) (Revised by BJ, 27-Dec-2021)

Ref Expression
Assertion bj-evalval
|- ( F e. V -> ( Slot A ` F ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( F e. V -> F e. _V )
2 fveq1
 |-  ( f = F -> ( f ` A ) = ( F ` A ) )
3 df-slot
 |-  Slot A = ( f e. _V |-> ( f ` A ) )
4 fvex
 |-  ( F ` A ) e. _V
5 2 3 4 fvmpt
 |-  ( F e. _V -> ( Slot A ` F ) = ( F ` A ) )
6 1 5 syl
 |-  ( F e. V -> ( Slot A ` F ) = ( F ` A ) )