Description: An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-exalimsi.1 | |- ( ph -> ( ps -> ch ) ) |
|
| bj-exalimsi.2 | |- ( E. x ph -> ( -. ch -> A. x -. ch ) ) |
||
| Assertion | bj-exalimsi | |- ( E. x ph -> ( A. x ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-exalimsi.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | bj-exalimsi.2 | |- ( E. x ph -> ( -. ch -> A. x -. ch ) ) |
|
| 3 | 2 | bj-exalims | |- ( A. x ( ph -> ( ps -> ch ) ) -> ( E. x ph -> ( A. x ps -> ch ) ) ) |
| 4 | 3 1 | mpg | |- ( E. x ph -> ( A. x ps -> ch ) ) |