Description: A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i . (Contributed by BJ, 19-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-ax12ig.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| bj-ax12ig.2 | |- ( ph -> ( ch -> A. x ch ) ) |
||
| Assertion | bj-ax12ig | |- ( ph -> ( ps -> A. x ( ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12ig.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | bj-ax12ig.2 | |- ( ph -> ( ch -> A. x ch ) ) |
|
| 3 | 1 | pm5.32i | |- ( ( ph /\ ps ) <-> ( ph /\ ch ) ) |
| 4 | 2 | imp | |- ( ( ph /\ ch ) -> A. x ch ) |
| 5 | 1 | biimprcd | |- ( ch -> ( ph -> ps ) ) |
| 6 | 4 5 | sylg | |- ( ( ph /\ ch ) -> A. x ( ph -> ps ) ) |
| 7 | 3 6 | sylbi | |- ( ( ph /\ ps ) -> A. x ( ph -> ps ) ) |
| 8 | 7 | ex | |- ( ph -> ( ps -> A. x ( ph -> ps ) ) ) |