Description: A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i . (Contributed by BJ, 19-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-ax12ig.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| bj-ax12ig.2 | ⊢ ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) ) | ||
| Assertion | bj-ax12ig | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12ig.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | bj-ax12ig.2 | ⊢ ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) ) | |
| 3 | 1 | pm5.32i | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) |
| 4 | 2 | imp | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ∀ 𝑥 𝜒 ) |
| 5 | 1 | biimprcd | ⊢ ( 𝜒 → ( 𝜑 → 𝜓 ) ) |
| 6 | 4 5 | sylg | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| 7 | 3 6 | sylbi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| 8 | 7 | ex | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |