Metamath Proof Explorer


Theorem bj-exlimd

Description: A slightly more general exlimd . A common usage will have ph substituted for ps and th substituted for ta , giving a form closer to exlimd . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-exlimd.ph
|- ( ph -> A. x ps )
bj-exlimd.th
|- ( ph -> ( E. x th -> ta ) )
bj-exlimd.maj
|- ( ps -> ( ch -> th ) )
Assertion bj-exlimd
|- ( ph -> ( E. x ch -> ta ) )

Proof

Step Hyp Ref Expression
1 bj-exlimd.ph
 |-  ( ph -> A. x ps )
2 bj-exlimd.th
 |-  ( ph -> ( E. x th -> ta ) )
3 bj-exlimd.maj
 |-  ( ps -> ( ch -> th ) )
4 1 3 sylg
 |-  ( ph -> A. x ( ch -> th ) )
5 bj-exlimg
 |-  ( ( E. x th -> ta ) -> ( A. x ( ch -> th ) -> ( E. x ch -> ta ) ) )
6 2 4 5 sylc
 |-  ( ph -> ( E. x ch -> ta ) )