Description: A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 ) and the converse implication is the join of instances of bj-alrimg and bj-exlimg (see 19.38a and 19.38b ). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nfimexal | |- ( ( ( E. x ph -> A. x ph ) \/ ( E. x ps -> A. x ps ) ) -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 | |- ( ( E. x ph -> A. x ps ) -> A. x ( ph -> ps ) ) |
|
2 | bj-alrimg | |- ( ( E. x ph -> A. x ph ) -> ( A. x ( ph -> ps ) -> ( E. x ph -> A. x ps ) ) ) |
|
3 | bj-exlimg | |- ( ( E. x ps -> A. x ps ) -> ( A. x ( ph -> ps ) -> ( E. x ph -> A. x ps ) ) ) |
|
4 | 2 3 | jaoi | |- ( ( ( E. x ph -> A. x ph ) \/ ( E. x ps -> A. x ps ) ) -> ( A. x ( ph -> ps ) -> ( E. x ph -> A. x ps ) ) ) |
5 | 1 4 | impbid2 | |- ( ( ( E. x ph -> A. x ph ) \/ ( E. x ps -> A. x ps ) ) -> ( ( E. x ph -> A. x ps ) <-> A. x ( ph -> ps ) ) ) |