Metamath Proof Explorer


Theorem bj-imn3ani

Description: Duplication of bnj1224 . Three-fold version of imnani . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Revised by BJ, 22-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-imn3ani.1
|- -. ( ph /\ ps /\ ch )
Assertion bj-imn3ani
|- ( ( ph /\ ps ) -> -. ch )

Proof

Step Hyp Ref Expression
1 bj-imn3ani.1
 |-  -. ( ph /\ ps /\ ch )
2 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
3 1 2 mtbi
 |-  -. ( ( ph /\ ps ) /\ ch )
4 3 imnani
 |-  ( ( ph /\ ps ) -> -. ch )