Metamath Proof Explorer


Theorem bj-andnotim

Description: Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-andnotim
|- ( ( ( ph /\ -. ps ) -> ch ) <-> ( ( ph -> ps ) \/ ch ) )

Proof

Step Hyp Ref Expression
1 imor
 |-  ( ( ( ph /\ -. ps ) -> ch ) <-> ( -. ( ph /\ -. ps ) \/ ch ) )
2 iman
 |-  ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) )
3 2 biimpri
 |-  ( -. ( ph /\ -. ps ) -> ( ph -> ps ) )
4 3 orim1i
 |-  ( ( -. ( ph /\ -. ps ) \/ ch ) -> ( ( ph -> ps ) \/ ch ) )
5 1 4 sylbi
 |-  ( ( ( ph /\ -. ps ) -> ch ) -> ( ( ph -> ps ) \/ ch ) )
6 pm2.24
 |-  ( ps -> ( -. ps -> ch ) )
7 6 imim2i
 |-  ( ( ph -> ps ) -> ( ph -> ( -. ps -> ch ) ) )
8 7 impd
 |-  ( ( ph -> ps ) -> ( ( ph /\ -. ps ) -> ch ) )
9 ax-1
 |-  ( ch -> ( ( ph /\ -. ps ) -> ch ) )
10 8 9 jaoi
 |-  ( ( ( ph -> ps ) \/ ch ) -> ( ( ph /\ -. ps ) -> ch ) )
11 5 10 impbii
 |-  ( ( ( ph /\ -. ps ) -> ch ) <-> ( ( ph -> ps ) \/ ch ) )