Step |
Hyp |
Ref |
Expression |
1 |
|
imor |
|- ( ( ( ph /\ -. ps ) -> ch ) <-> ( -. ( ph /\ -. ps ) \/ ch ) ) |
2 |
|
iman |
|- ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) ) |
3 |
2
|
biimpri |
|- ( -. ( ph /\ -. ps ) -> ( ph -> ps ) ) |
4 |
3
|
orim1i |
|- ( ( -. ( ph /\ -. ps ) \/ ch ) -> ( ( ph -> ps ) \/ ch ) ) |
5 |
1 4
|
sylbi |
|- ( ( ( ph /\ -. ps ) -> ch ) -> ( ( ph -> ps ) \/ ch ) ) |
6 |
|
pm2.24 |
|- ( ps -> ( -. ps -> ch ) ) |
7 |
6
|
imim2i |
|- ( ( ph -> ps ) -> ( ph -> ( -. ps -> ch ) ) ) |
8 |
7
|
impd |
|- ( ( ph -> ps ) -> ( ( ph /\ -. ps ) -> ch ) ) |
9 |
|
ax-1 |
|- ( ch -> ( ( ph /\ -. ps ) -> ch ) ) |
10 |
8 9
|
jaoi |
|- ( ( ( ph -> ps ) \/ ch ) -> ( ( ph /\ -. ps ) -> ch ) ) |
11 |
5 10
|
impbii |
|- ( ( ( ph /\ -. ps ) -> ch ) <-> ( ( ph -> ps ) \/ ch ) ) |