Step |
Hyp |
Ref |
Expression |
1 |
|
imor |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( ¬ ( 𝜑 ∧ ¬ 𝜓 ) ∨ 𝜒 ) ) |
2 |
|
iman |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
3 |
2
|
biimpri |
⊢ ( ¬ ( 𝜑 ∧ ¬ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
4 |
3
|
orim1i |
⊢ ( ( ¬ ( 𝜑 ∧ ¬ 𝜓 ) ∨ 𝜒 ) → ( ( 𝜑 → 𝜓 ) ∨ 𝜒 ) ) |
5 |
1 4
|
sylbi |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) → ( ( 𝜑 → 𝜓 ) ∨ 𝜒 ) ) |
6 |
|
pm2.24 |
⊢ ( 𝜓 → ( ¬ 𝜓 → 𝜒 ) ) |
7 |
6
|
imim2i |
⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) ) |
8 |
7
|
impd |
⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ) |
9 |
|
ax-1 |
⊢ ( 𝜒 → ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ) |
10 |
8 9
|
jaoi |
⊢ ( ( ( 𝜑 → 𝜓 ) ∨ 𝜒 ) → ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ) |
11 |
5 10
|
impbii |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ 𝜒 ) ) |