Metamath Proof Explorer


Theorem bj-bi3ant

Description: This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013) (Revised by BJ, 14-Jun-2019)

Ref Expression
Hypothesis bj-bi3ant.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion bj-bi3ant ( ( ( 𝜃𝜏 ) → 𝜑 ) → ( ( ( 𝜏𝜃 ) → 𝜓 ) → ( ( 𝜃𝜏 ) → 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 bj-bi3ant.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 biimp ( ( 𝜃𝜏 ) → ( 𝜃𝜏 ) )
3 2 imim1i ( ( ( 𝜃𝜏 ) → 𝜑 ) → ( ( 𝜃𝜏 ) → 𝜑 ) )
4 biimpr ( ( 𝜃𝜏 ) → ( 𝜏𝜃 ) )
5 4 imim1i ( ( ( 𝜏𝜃 ) → 𝜓 ) → ( ( 𝜃𝜏 ) → 𝜓 ) )
6 1 imim3i ( ( ( 𝜃𝜏 ) → 𝜑 ) → ( ( ( 𝜃𝜏 ) → 𝜓 ) → ( ( 𝜃𝜏 ) → 𝜒 ) ) )
7 3 5 6 syl2im ( ( ( 𝜃𝜏 ) → 𝜑 ) → ( ( ( 𝜏𝜃 ) → 𝜓 ) → ( ( 𝜃𝜏 ) → 𝜒 ) ) )