Metamath Proof Explorer


Theorem bj-bi3ant

Description: This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013) (Revised by BJ, 14-Jun-2019)

Ref Expression
Hypothesis bj-bi3ant.1 φ ψ χ
Assertion bj-bi3ant θ τ φ τ θ ψ θ τ χ

Proof

Step Hyp Ref Expression
1 bj-bi3ant.1 φ ψ χ
2 biimp θ τ θ τ
3 2 imim1i θ τ φ θ τ φ
4 biimpr θ τ τ θ
5 4 imim1i τ θ ψ θ τ ψ
6 1 imim3i θ τ φ θ τ ψ θ τ χ
7 3 5 6 syl2im θ τ φ τ θ ψ θ τ χ