Metamath Proof Explorer


Theorem bj-bi3ant

Description: This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013) (Revised by BJ, 14-Jun-2019)

Ref Expression
Hypothesis bj-bi3ant.1
|- ( ph -> ( ps -> ch ) )
Assertion bj-bi3ant
|- ( ( ( th -> ta ) -> ph ) -> ( ( ( ta -> th ) -> ps ) -> ( ( th <-> ta ) -> ch ) ) )

Proof

Step Hyp Ref Expression
1 bj-bi3ant.1
 |-  ( ph -> ( ps -> ch ) )
2 biimp
 |-  ( ( th <-> ta ) -> ( th -> ta ) )
3 2 imim1i
 |-  ( ( ( th -> ta ) -> ph ) -> ( ( th <-> ta ) -> ph ) )
4 biimpr
 |-  ( ( th <-> ta ) -> ( ta -> th ) )
5 4 imim1i
 |-  ( ( ( ta -> th ) -> ps ) -> ( ( th <-> ta ) -> ps ) )
6 1 imim3i
 |-  ( ( ( th <-> ta ) -> ph ) -> ( ( ( th <-> ta ) -> ps ) -> ( ( th <-> ta ) -> ch ) ) )
7 3 5 6 syl2im
 |-  ( ( ( th -> ta ) -> ph ) -> ( ( ( ta -> th ) -> ps ) -> ( ( th <-> ta ) -> ch ) ) )