Metamath Proof Explorer


Theorem bj-issettruALTV

Description: Moved to main as issettru and kept for the comments.

Weak version of isset without ax-ext . (Contributed by BJ, 24-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-issettruALTV
|- ( E. x x = A <-> A e. { y | T. } )

Proof

Step Hyp Ref Expression
1 iseqsetv-clel
 |-  ( E. x x = A <-> E. z z = A )
2 issettru
 |-  ( E. z z = A <-> A e. { y | T. } )
3 1 2 bitri
 |-  ( E. x x = A <-> A e. { y | T. } )