Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-lineqi.a | |- ( ph -> A e. CC ) |
|
| bj-lineqi.b | |- ( ph -> B e. CC ) |
||
| bj-lineqi.x | |- ( ph -> X e. CC ) |
||
| bj-lineqi.y | |- ( ph -> Y e. CC ) |
||
| bj-lineqi.n0 | |- ( ph -> A =/= 0 ) |
||
| bj-lineqi.1 | |- ( ph -> ( ( A x. X ) + B ) = Y ) |
||
| Assertion | bj-lineqi | |- ( ph -> X = ( ( Y - B ) / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-lineqi.a | |- ( ph -> A e. CC ) |
|
| 2 | bj-lineqi.b | |- ( ph -> B e. CC ) |
|
| 3 | bj-lineqi.x | |- ( ph -> X e. CC ) |
|
| 4 | bj-lineqi.y | |- ( ph -> Y e. CC ) |
|
| 5 | bj-lineqi.n0 | |- ( ph -> A =/= 0 ) |
|
| 6 | bj-lineqi.1 | |- ( ph -> ( ( A x. X ) + B ) = Y ) |
|
| 7 | 1 2 3 4 5 | lineq | |- ( ph -> ( ( ( A x. X ) + B ) = Y <-> X = ( ( Y - B ) / A ) ) ) |
| 8 | 6 7 | mpbid | |- ( ph -> X = ( ( Y - B ) / A ) ) |