Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-lineqi.a | |- ( ph -> A e. CC ) |
|
bj-lineqi.b | |- ( ph -> B e. CC ) |
||
bj-lineqi.x | |- ( ph -> X e. CC ) |
||
bj-lineqi.y | |- ( ph -> Y e. CC ) |
||
bj-lineqi.n0 | |- ( ph -> A =/= 0 ) |
||
bj-lineqi.1 | |- ( ph -> ( ( A x. X ) + B ) = Y ) |
||
Assertion | bj-lineqi | |- ( ph -> X = ( ( Y - B ) / A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-lineqi.a | |- ( ph -> A e. CC ) |
|
2 | bj-lineqi.b | |- ( ph -> B e. CC ) |
|
3 | bj-lineqi.x | |- ( ph -> X e. CC ) |
|
4 | bj-lineqi.y | |- ( ph -> Y e. CC ) |
|
5 | bj-lineqi.n0 | |- ( ph -> A =/= 0 ) |
|
6 | bj-lineqi.1 | |- ( ph -> ( ( A x. X ) + B ) = Y ) |
|
7 | 1 2 3 4 5 | lineq | |- ( ph -> ( ( ( A x. X ) + B ) = Y <-> X = ( ( Y - B ) / A ) ) ) |
8 | 6 7 | mpbid | |- ( ph -> X = ( ( Y - B ) / A ) ) |