Metamath Proof Explorer


Theorem bj-lineqi

Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-lineqi.a
|- ( ph -> A e. CC )
bj-lineqi.b
|- ( ph -> B e. CC )
bj-lineqi.x
|- ( ph -> X e. CC )
bj-lineqi.y
|- ( ph -> Y e. CC )
bj-lineqi.n0
|- ( ph -> A =/= 0 )
bj-lineqi.1
|- ( ph -> ( ( A x. X ) + B ) = Y )
Assertion bj-lineqi
|- ( ph -> X = ( ( Y - B ) / A ) )

Proof

Step Hyp Ref Expression
1 bj-lineqi.a
 |-  ( ph -> A e. CC )
2 bj-lineqi.b
 |-  ( ph -> B e. CC )
3 bj-lineqi.x
 |-  ( ph -> X e. CC )
4 bj-lineqi.y
 |-  ( ph -> Y e. CC )
5 bj-lineqi.n0
 |-  ( ph -> A =/= 0 )
6 bj-lineqi.1
 |-  ( ph -> ( ( A x. X ) + B ) = Y )
7 1 2 3 4 5 lineq
 |-  ( ph -> ( ( ( A x. X ) + B ) = Y <-> X = ( ( Y - B ) / A ) ) )
8 6 7 mpbid
 |-  ( ph -> X = ( ( Y - B ) / A ) )