Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-lineqi.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| bj-lineqi.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| bj-lineqi.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| bj-lineqi.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | ||
| bj-lineqi.n0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| bj-lineqi.1 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ) | ||
| Assertion | bj-lineqi | ⊢ ( 𝜑 → 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-lineqi.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | bj-lineqi.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | bj-lineqi.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 4 | bj-lineqi.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | |
| 5 | bj-lineqi.n0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 6 | bj-lineqi.1 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ) | |
| 7 | 1 2 3 4 5 | lineq | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |
| 8 | 6 7 | mpbid | ⊢ ( 𝜑 → 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) |