Metamath Proof Explorer


Theorem bj-lineqi

Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-lineqi.a ( 𝜑𝐴 ∈ ℂ )
bj-lineqi.b ( 𝜑𝐵 ∈ ℂ )
bj-lineqi.x ( 𝜑𝑋 ∈ ℂ )
bj-lineqi.y ( 𝜑𝑌 ∈ ℂ )
bj-lineqi.n0 ( 𝜑𝐴 ≠ 0 )
bj-lineqi.1 ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 )
Assertion bj-lineqi ( 𝜑𝑋 = ( ( 𝑌𝐵 ) / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 bj-lineqi.a ( 𝜑𝐴 ∈ ℂ )
2 bj-lineqi.b ( 𝜑𝐵 ∈ ℂ )
3 bj-lineqi.x ( 𝜑𝑋 ∈ ℂ )
4 bj-lineqi.y ( 𝜑𝑌 ∈ ℂ )
5 bj-lineqi.n0 ( 𝜑𝐴 ≠ 0 )
6 bj-lineqi.1 ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 )
7 1 2 3 4 5 lineq ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌𝑋 = ( ( 𝑌𝐵 ) / 𝐴 ) ) )
8 6 7 mpbid ( 𝜑𝑋 = ( ( 𝑌𝐵 ) / 𝐴 ) )