Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lineq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| lineq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| lineq.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| lineq.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | ||
| lineq.n0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | lineq | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lineq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | lineq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | lineq.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 4 | lineq.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | |
| 5 | lineq.n0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 6 | 1 3 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ℂ ) |
| 7 | 6 2 4 | addlsub | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ ( 𝐴 · 𝑋 ) = ( 𝑌 − 𝐵 ) ) ) |
| 8 | 4 2 | subcld | ⊢ ( 𝜑 → ( 𝑌 − 𝐵 ) ∈ ℂ ) |
| 9 | 1 3 8 5 | rdiv | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝑌 − 𝐵 ) ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |
| 10 | 7 9 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |