| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addlsub.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
addlsub.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
addlsub.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
oveq1 |
⊢ ( ( 𝐴 + 𝐵 ) = 𝐶 → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
| 5 |
1 2
|
pncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 6 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) → ( 𝐶 − 𝐵 ) = 𝐴 ) |
| 7 |
6
|
eqcomd |
⊢ ( ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) → 𝐴 = ( 𝐶 − 𝐵 ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) → 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 9 |
5 8
|
mpan2d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = ( 𝐶 − 𝐵 ) → 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 10 |
4 9
|
syl5 |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 → 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝐴 = ( 𝐶 − 𝐵 ) → ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) ) |
| 12 |
3 2
|
npcand |
⊢ ( 𝜑 → ( ( 𝐶 − 𝐵 ) + 𝐵 ) = 𝐶 ) |
| 13 |
|
eqtr |
⊢ ( ( ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) + 𝐵 ) = 𝐶 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) + 𝐵 ) = 𝐶 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
| 15 |
12 14
|
mpan2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐵 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
| 16 |
11 15
|
syl5 |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 − 𝐵 ) → ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
| 17 |
10 16
|
impbid |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 − 𝐵 ) ) ) |