Metamath Proof Explorer


Theorem addlsub

Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a
|- ( ph -> A e. CC )
addlsub.b
|- ( ph -> B e. CC )
addlsub.c
|- ( ph -> C e. CC )
Assertion addlsub
|- ( ph -> ( ( A + B ) = C <-> A = ( C - B ) ) )

Proof

Step Hyp Ref Expression
1 addlsub.a
 |-  ( ph -> A e. CC )
2 addlsub.b
 |-  ( ph -> B e. CC )
3 addlsub.c
 |-  ( ph -> C e. CC )
4 oveq1
 |-  ( ( A + B ) = C -> ( ( A + B ) - B ) = ( C - B ) )
5 1 2 pncand
 |-  ( ph -> ( ( A + B ) - B ) = A )
6 eqtr2
 |-  ( ( ( ( A + B ) - B ) = ( C - B ) /\ ( ( A + B ) - B ) = A ) -> ( C - B ) = A )
7 6 eqcomd
 |-  ( ( ( ( A + B ) - B ) = ( C - B ) /\ ( ( A + B ) - B ) = A ) -> A = ( C - B ) )
8 7 a1i
 |-  ( ph -> ( ( ( ( A + B ) - B ) = ( C - B ) /\ ( ( A + B ) - B ) = A ) -> A = ( C - B ) ) )
9 5 8 mpan2d
 |-  ( ph -> ( ( ( A + B ) - B ) = ( C - B ) -> A = ( C - B ) ) )
10 4 9 syl5
 |-  ( ph -> ( ( A + B ) = C -> A = ( C - B ) ) )
11 oveq1
 |-  ( A = ( C - B ) -> ( A + B ) = ( ( C - B ) + B ) )
12 3 2 npcand
 |-  ( ph -> ( ( C - B ) + B ) = C )
13 eqtr
 |-  ( ( ( A + B ) = ( ( C - B ) + B ) /\ ( ( C - B ) + B ) = C ) -> ( A + B ) = C )
14 13 a1i
 |-  ( ph -> ( ( ( A + B ) = ( ( C - B ) + B ) /\ ( ( C - B ) + B ) = C ) -> ( A + B ) = C ) )
15 12 14 mpan2d
 |-  ( ph -> ( ( A + B ) = ( ( C - B ) + B ) -> ( A + B ) = C ) )
16 11 15 syl5
 |-  ( ph -> ( A = ( C - B ) -> ( A + B ) = C ) )
17 10 16 impbid
 |-  ( ph -> ( ( A + B ) = C <-> A = ( C - B ) ) )