Description: Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addlsub.a | |- ( ph -> A e. CC ) |
|
| addlsub.b | |- ( ph -> B e. CC ) |
||
| addlsub.c | |- ( ph -> C e. CC ) |
||
| Assertion | addrsub | |- ( ph -> ( ( A + B ) = C <-> B = ( C - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlsub.a | |- ( ph -> A e. CC ) |
|
| 2 | addlsub.b | |- ( ph -> B e. CC ) |
|
| 3 | addlsub.c | |- ( ph -> C e. CC ) |
|
| 4 | 1 2 | addcomd | |- ( ph -> ( A + B ) = ( B + A ) ) |
| 5 | 4 | eqeq1d | |- ( ph -> ( ( A + B ) = C <-> ( B + A ) = C ) ) |
| 6 | 2 1 3 | addlsub | |- ( ph -> ( ( B + A ) = C <-> B = ( C - A ) ) ) |
| 7 | 5 6 | bitrd | |- ( ph -> ( ( A + B ) = C <-> B = ( C - A ) ) ) |