Metamath Proof Explorer


Theorem bj-mndsssmgrpel

Description: Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-mndsssmgrpel
|- ( G e. Mnd -> G e. Smgrp )

Proof

Step Hyp Ref Expression
1 bj-mndsssmgrp
 |-  Mnd C_ Smgrp
2 1 sseli
 |-  ( G e. Mnd -> G e. Smgrp )