Metamath Proof Explorer


Theorem bj-mndsssmgrpel

Description: Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-mndsssmgrpel ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 bj-mndsssmgrp Mnd ⊆ Smgrp
2 1 sseli ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp )