Metamath Proof Explorer


Theorem bj-mndsssmgrp

Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Assertion bj-mndsssmgrp Mnd ⊆ Smgrp

Proof

Step Hyp Ref Expression
1 df-mnd Mnd = { 𝑔 ∈ Smgrp ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g𝑔 ) / 𝑝 ]𝑒𝑏𝑥𝑏 ( ( 𝑒 𝑝 𝑥 ) = 𝑥 ∧ ( 𝑥 𝑝 𝑒 ) = 𝑥 ) }
2 1 ssrab3 Mnd ⊆ Smgrp