Metamath Proof Explorer


Theorem bj-nnflemaa

Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnflemaa
|- ( A. x ( ph -> A. y ph ) -> ( A. x ph -> A. y A. x ph ) )

Proof

Step Hyp Ref Expression
1 alim
 |-  ( A. x ( ph -> A. y ph ) -> ( A. x ph -> A. x A. y ph ) )
2 ax-11
 |-  ( A. x A. y ph -> A. y A. x ph )
3 1 2 syl6
 |-  ( A. x ( ph -> A. y ph ) -> ( A. x ph -> A. y A. x ph ) )