Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nnflemaa | |- ( A. x ( ph -> A. y ph ) -> ( A. x ph -> A. y A. x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim | |- ( A. x ( ph -> A. y ph ) -> ( A. x ph -> A. x A. y ph ) ) |
|
2 | ax-11 | |- ( A. x A. y ph -> A. y A. x ph ) |
|
3 | 1 2 | syl6 | |- ( A. x ( ph -> A. y ph ) -> ( A. x ph -> A. y A. x ph ) ) |