Metamath Proof Explorer


Theorem bj-nnflemee

Description: One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnflemee
|- ( A. x ( E. y ph -> ph ) -> ( E. y E. x ph -> E. x ph ) )

Proof

Step Hyp Ref Expression
1 excom
 |-  ( E. y E. x ph <-> E. x E. y ph )
2 exim
 |-  ( A. x ( E. y ph -> ph ) -> ( E. x E. y ph -> E. x ph ) )
3 1 2 syl5bi
 |-  ( A. x ( E. y ph -> ph ) -> ( E. y E. x ph -> E. x ph ) )