Description: One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nnflemae | |- ( A. x ( ph -> A. y ph ) -> ( E. x ph -> A. y E. x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim | |- ( A. x ( ph -> A. y ph ) -> ( E. x ph -> E. x A. y ph ) ) |
|
2 | bj-19.12 | |- ( E. x A. y ph -> A. y E. x ph ) |
|
3 | 1 2 | syl6 | |- ( A. x ( ph -> A. y ph ) -> ( E. x ph -> A. y E. x ph ) ) |