Metamath Proof Explorer


Theorem bj-nnflemae

Description: One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnflemae
|- ( A. x ( ph -> A. y ph ) -> ( E. x ph -> A. y E. x ph ) )

Proof

Step Hyp Ref Expression
1 exim
 |-  ( A. x ( ph -> A. y ph ) -> ( E. x ph -> E. x A. y ph ) )
2 bj-19.12
 |-  ( E. x A. y ph -> A. y E. x ph )
3 1 2 syl6
 |-  ( A. x ( ph -> A. y ph ) -> ( E. x ph -> A. y E. x ph ) )