Metamath Proof Explorer


Theorem bj-nnfnth

Description: A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Hypothesis bj-nnfnth.1
|- -. ph
Assertion bj-nnfnth
|- F// x ph

Proof

Step Hyp Ref Expression
1 bj-nnfnth.1
 |-  -. ph
2 1 bj-nnfth
 |-  F// x -. ph
3 bj-nnfnt
 |-  ( F// x ph <-> F// x -. ph )
4 2 3 mpbir
 |-  F// x ph