Metamath Proof Explorer


Theorem bj-nnfth

Description: A variable is nonfree in a theorem, inference form. (Contributed by BJ, 28-Jul-2023)

Ref Expression
Hypothesis bj-nnfth.1
|- ph
Assertion bj-nnfth
|- F// x ph

Proof

Step Hyp Ref Expression
1 bj-nnfth.1
 |-  ph
2 bj-nnftht
 |-  ( ( ph /\ A. x ph ) -> F// x ph )
3 1 2 bj-mpgs
 |-  F// x ph