Metamath Proof Explorer


Theorem bj-nnftht

Description: A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp (modal T), as in bj-nnfbi . (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnftht
|- ( ( ph /\ A. x ph ) -> F// x ph )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ph -> ( E. x ph -> ph ) )
2 ax-1
 |-  ( A. x ph -> ( ph -> A. x ph ) )
3 1 2 anim12i
 |-  ( ( ph /\ A. x ph ) -> ( ( E. x ph -> ph ) /\ ( ph -> A. x ph ) ) )
4 df-bj-nnf
 |-  ( F// x ph <-> ( ( E. x ph -> ph ) /\ ( ph -> A. x ph ) ) )
5 3 4 sylibr
 |-  ( ( ph /\ A. x ph ) -> F// x ph )