Metamath Proof Explorer


Theorem bj-nnftht

Description: A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp (modal T), as in bj-nnfbi . (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnftht φ x φ Ⅎ' x φ

Proof

Step Hyp Ref Expression
1 ax-1 φ x φ φ
2 ax-1 x φ φ x φ
3 1 2 anim12i φ x φ x φ φ φ x φ
4 df-bj-nnf Ⅎ' x φ x φ φ φ x φ
5 3 4 sylibr φ x φ Ⅎ' x φ