Description: Proof of orim2 from the axiomatic definition of disjunction ( olc , orc , jao ) and minimal implicational calculus. (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-orim2 | |- ( ( ph -> ps ) -> ( ( ch \/ ph ) -> ( ch \/ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |- ( ch -> ( ch \/ ps ) ) |
|
2 | olc | |- ( ps -> ( ch \/ ps ) ) |
|
3 | 2 | imim2i | |- ( ( ph -> ps ) -> ( ph -> ( ch \/ ps ) ) ) |
4 | jao | |- ( ( ch -> ( ch \/ ps ) ) -> ( ( ph -> ( ch \/ ps ) ) -> ( ( ch \/ ph ) -> ( ch \/ ps ) ) ) ) |
|
5 | 1 3 4 | mpsyl | |- ( ( ph -> ps ) -> ( ( ch \/ ph ) -> ( ch \/ ps ) ) ) |