Metamath Proof Explorer


Theorem bj-orim2

Description: Proof of orim2 from the axiomatic definition of disjunction ( olc , orc , jao ) and minimal implicational calculus. (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-orim2
|- ( ( ph -> ps ) -> ( ( ch \/ ph ) -> ( ch \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( ch -> ( ch \/ ps ) )
2 olc
 |-  ( ps -> ( ch \/ ps ) )
3 2 imim2i
 |-  ( ( ph -> ps ) -> ( ph -> ( ch \/ ps ) ) )
4 jao
 |-  ( ( ch -> ( ch \/ ps ) ) -> ( ( ph -> ( ch \/ ps ) ) -> ( ( ch \/ ph ) -> ( ch \/ ps ) ) ) )
5 1 3 4 mpsyl
 |-  ( ( ph -> ps ) -> ( ( ch \/ ph ) -> ( ch \/ ps ) ) )