Metamath Proof Explorer


Theorem bj-pr2eq

Description: Substitution property for pr2 . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-pr2eq
|- ( A = B -> pr2 A = pr2 B )

Proof

Step Hyp Ref Expression
1 bj-projeq2
 |-  ( A = B -> ( 1o Proj A ) = ( 1o Proj B ) )
2 df-bj-pr2
 |-  pr2 A = ( 1o Proj A )
3 df-bj-pr2
 |-  pr2 B = ( 1o Proj B )
4 1 2 3 3eqtr4g
 |-  ( A = B -> pr2 A = pr2 B )