Metamath Proof Explorer


Theorem bj-pr2un

Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr2un
|- pr2 ( A u. B ) = ( pr2 A u. pr2 B )

Proof

Step Hyp Ref Expression
1 bj-projun
 |-  ( 1o Proj ( A u. B ) ) = ( ( 1o Proj A ) u. ( 1o Proj B ) )
2 df-bj-pr2
 |-  pr2 ( A u. B ) = ( 1o Proj ( A u. B ) )
3 df-bj-pr2
 |-  pr2 A = ( 1o Proj A )
4 df-bj-pr2
 |-  pr2 B = ( 1o Proj B )
5 3 4 uneq12i
 |-  ( pr2 A u. pr2 B ) = ( ( 1o Proj A ) u. ( 1o Proj B ) )
6 1 2 5 3eqtr4i
 |-  pr2 ( A u. B ) = ( pr2 A u. pr2 B )