Metamath Proof Explorer


Theorem bj-pr2un

Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr2un pr2 A B = pr2 A pr2 B

Proof

Step Hyp Ref Expression
1 bj-projun 1 𝑜 Proj A B = 1 𝑜 Proj A 1 𝑜 Proj B
2 df-bj-pr2 pr2 A B = 1 𝑜 Proj A B
3 df-bj-pr2 pr2 A = 1 𝑜 Proj A
4 df-bj-pr2 pr2 B = 1 𝑜 Proj B
5 3 4 uneq12i pr2 A pr2 B = 1 𝑜 Proj A 1 𝑜 Proj B
6 1 2 5 3eqtr4i pr2 A B = pr2 A pr2 B