Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-pr2un | ⊢ pr2 ( 𝐴 ∪ 𝐵 ) = ( pr2 𝐴 ∪ pr2 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-projun | ⊢ ( 1o Proj ( 𝐴 ∪ 𝐵 ) ) = ( ( 1o Proj 𝐴 ) ∪ ( 1o Proj 𝐵 ) ) | |
2 | df-bj-pr2 | ⊢ pr2 ( 𝐴 ∪ 𝐵 ) = ( 1o Proj ( 𝐴 ∪ 𝐵 ) ) | |
3 | df-bj-pr2 | ⊢ pr2 𝐴 = ( 1o Proj 𝐴 ) | |
4 | df-bj-pr2 | ⊢ pr2 𝐵 = ( 1o Proj 𝐵 ) | |
5 | 3 4 | uneq12i | ⊢ ( pr2 𝐴 ∪ pr2 𝐵 ) = ( ( 1o Proj 𝐴 ) ∪ ( 1o Proj 𝐵 ) ) |
6 | 1 2 5 | 3eqtr4i | ⊢ pr2 ( 𝐴 ∪ 𝐵 ) = ( pr2 𝐴 ∪ pr2 𝐵 ) |