Metamath Proof Explorer


Theorem bj-pr2val

Description: Value of the second projection. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr2val pr2 ( { 𝐴 } × tag 𝐵 ) = if ( 𝐴 = 1o , 𝐵 , ∅ )

Proof

Step Hyp Ref Expression
1 df-bj-pr2 pr2 ( { 𝐴 } × tag 𝐵 ) = ( 1o Proj ( { 𝐴 } × tag 𝐵 ) )
2 1oex 1o ∈ V
3 bj-projval ( 1o ∈ V → ( 1o Proj ( { 𝐴 } × tag 𝐵 ) ) = if ( 𝐴 = 1o , 𝐵 , ∅ ) )
4 2 3 ax-mp ( 1o Proj ( { 𝐴 } × tag 𝐵 ) ) = if ( 𝐴 = 1o , 𝐵 , ∅ )
5 1 4 eqtri pr2 ( { 𝐴 } × tag 𝐵 ) = if ( 𝐴 = 1o , 𝐵 , ∅ )