Step |
Hyp |
Ref |
Expression |
1 |
|
elsng |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |
2 |
|
bj-xpima2sn |
⊢ ( 𝐴 ∈ { 𝐵 } → ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) = tag 𝐶 ) |
3 |
1 2
|
syl6bir |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) = tag 𝐶 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) = tag 𝐶 ) |
5 |
4
|
eleq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( { 𝑥 } ∈ ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) ↔ { 𝑥 } ∈ tag 𝐶 ) ) |
6 |
5
|
abbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → { 𝑥 ∣ { 𝑥 } ∈ ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) } = { 𝑥 ∣ { 𝑥 } ∈ tag 𝐶 } ) |
7 |
|
df-bj-proj |
⊢ ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = { 𝑥 ∣ { 𝑥 } ∈ ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) } |
8 |
|
bj-taginv |
⊢ 𝐶 = { 𝑥 ∣ { 𝑥 } ∈ tag 𝐶 } |
9 |
6 7 8
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = 𝐶 ) |
10 |
9
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = 𝐶 ) ) |
11 |
|
noel |
⊢ ¬ { 𝑥 } ∈ ∅ |
12 |
7
|
abeq2i |
⊢ ( 𝑥 ∈ ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) ↔ { 𝑥 } ∈ ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) ) |
13 |
|
elsni |
⊢ ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) |
14 |
|
bj-xpima1sn |
⊢ ( ¬ 𝐴 ∈ { 𝐵 } → ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) = ∅ ) |
15 |
13 14
|
nsyl5 |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) = ∅ ) |
16 |
15
|
eleq2d |
⊢ ( ¬ 𝐴 = 𝐵 → ( { 𝑥 } ∈ ( ( { 𝐵 } × tag 𝐶 ) “ { 𝐴 } ) ↔ { 𝑥 } ∈ ∅ ) ) |
17 |
12 16
|
syl5bb |
⊢ ( ¬ 𝐴 = 𝐵 → ( 𝑥 ∈ ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) ↔ { 𝑥 } ∈ ∅ ) ) |
18 |
11 17
|
mtbiri |
⊢ ( ¬ 𝐴 = 𝐵 → ¬ 𝑥 ∈ ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) ) |
19 |
18
|
eq0rdv |
⊢ ( ¬ 𝐴 = 𝐵 → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = ∅ ) |
20 |
|
ifval |
⊢ ( ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = if ( 𝐴 = 𝐵 , 𝐶 , ∅ ) ↔ ( ( 𝐴 = 𝐵 → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = 𝐶 ) ∧ ( ¬ 𝐴 = 𝐵 → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = ∅ ) ) ) |
21 |
10 19 20
|
sylanblrc |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = if ( 𝐴 = 𝐵 , 𝐶 , ∅ ) ) |
22 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
23 |
|
ifbi |
⊢ ( ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) → if ( 𝐴 = 𝐵 , 𝐶 , ∅ ) = if ( 𝐵 = 𝐴 , 𝐶 , ∅ ) ) |
24 |
22 23
|
ax-mp |
⊢ if ( 𝐴 = 𝐵 , 𝐶 , ∅ ) = if ( 𝐵 = 𝐴 , 𝐶 , ∅ ) |
25 |
21 24
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Proj ( { 𝐵 } × tag 𝐶 ) ) = if ( 𝐵 = 𝐴 , 𝐶 , ∅ ) ) |