| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elsng | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  { 𝐵 }  ↔  𝐴  =  𝐵 ) ) | 
						
							| 2 |  | bj-xpima2sn | ⊢ ( 𝐴  ∈  { 𝐵 }  →  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  =  tag  𝐶 ) | 
						
							| 3 | 1 2 | biimtrrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  =  𝐵  →  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  =  tag  𝐶 ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  =  tag  𝐶 ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  ( { 𝑥 }  ∈  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  ↔  { 𝑥 }  ∈  tag  𝐶 ) ) | 
						
							| 6 | 5 | abbidv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  { 𝑥  ∣  { 𝑥 }  ∈  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } ) }  =  { 𝑥  ∣  { 𝑥 }  ∈  tag  𝐶 } ) | 
						
							| 7 |  | df-bj-proj | ⊢ ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  { 𝑥  ∣  { 𝑥 }  ∈  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } ) } | 
						
							| 8 |  | bj-taginv | ⊢ 𝐶  =  { 𝑥  ∣  { 𝑥 }  ∈  tag  𝐶 } | 
						
							| 9 | 6 7 8 | 3eqtr4g | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  =  𝐵 )  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  𝐶 ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  =  𝐵  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  𝐶 ) ) | 
						
							| 11 |  | noel | ⊢ ¬  { 𝑥 }  ∈  ∅ | 
						
							| 12 | 7 | eqabri | ⊢ ( 𝑥  ∈  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  ↔  { 𝑥 }  ∈  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } ) ) | 
						
							| 13 |  | elsni | ⊢ ( 𝐴  ∈  { 𝐵 }  →  𝐴  =  𝐵 ) | 
						
							| 14 |  | bj-xpima1sn | ⊢ ( ¬  𝐴  ∈  { 𝐵 }  →  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  =  ∅ ) | 
						
							| 15 | 13 14 | nsyl5 | ⊢ ( ¬  𝐴  =  𝐵  →  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  =  ∅ ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( ¬  𝐴  =  𝐵  →  ( { 𝑥 }  ∈  ( ( { 𝐵 }  ×  tag  𝐶 )  “  { 𝐴 } )  ↔  { 𝑥 }  ∈  ∅ ) ) | 
						
							| 17 | 12 16 | bitrid | ⊢ ( ¬  𝐴  =  𝐵  →  ( 𝑥  ∈  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  ↔  { 𝑥 }  ∈  ∅ ) ) | 
						
							| 18 | 11 17 | mtbiri | ⊢ ( ¬  𝐴  =  𝐵  →  ¬  𝑥  ∈  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) ) ) | 
						
							| 19 | 18 | eq0rdv | ⊢ ( ¬  𝐴  =  𝐵  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  ∅ ) | 
						
							| 20 |  | ifval | ⊢ ( ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  if ( 𝐴  =  𝐵 ,  𝐶 ,  ∅ )  ↔  ( ( 𝐴  =  𝐵  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  𝐶 )  ∧  ( ¬  𝐴  =  𝐵  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  ∅ ) ) ) | 
						
							| 21 | 10 19 20 | sylanblrc | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  if ( 𝐴  =  𝐵 ,  𝐶 ,  ∅ ) ) | 
						
							| 22 |  | eqcom | ⊢ ( 𝐴  =  𝐵  ↔  𝐵  =  𝐴 ) | 
						
							| 23 |  | ifbi | ⊢ ( ( 𝐴  =  𝐵  ↔  𝐵  =  𝐴 )  →  if ( 𝐴  =  𝐵 ,  𝐶 ,  ∅ )  =  if ( 𝐵  =  𝐴 ,  𝐶 ,  ∅ ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ if ( 𝐴  =  𝐵 ,  𝐶 ,  ∅ )  =  if ( 𝐵  =  𝐴 ,  𝐶 ,  ∅ ) | 
						
							| 25 | 21 24 | eqtrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  Proj  ( { 𝐵 }  ×  tag  𝐶 ) )  =  if ( 𝐵  =  𝐴 ,  𝐶 ,  ∅ ) ) |