Metamath Proof Explorer


Theorem bj-xpima2sn

Description: The image of a singleton by a direct product, nonempty case. [To replace xpimasn .] (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-xpima2sn ( 𝑋𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 bj-xpimasn ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = if ( 𝑋𝐴 , 𝐵 , ∅ )
2 iftrue ( 𝑋𝐴 → if ( 𝑋𝐴 , 𝐵 , ∅ ) = 𝐵 )
3 1 2 syl5eq ( 𝑋𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 )