Metamath Proof Explorer


Theorem bj-xpima2sn

Description: The image of a singleton by a direct product, nonempty case. [To replace xpimasn .] (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-xpima2sn
|- ( X e. A -> ( ( A X. B ) " { X } ) = B )

Proof

Step Hyp Ref Expression
1 bj-xpimasn
 |-  ( ( A X. B ) " { X } ) = if ( X e. A , B , (/) )
2 iftrue
 |-  ( X e. A -> if ( X e. A , B , (/) ) = B )
3 1 2 syl5eq
 |-  ( X e. A -> ( ( A X. B ) " { X } ) = B )