Metamath Proof Explorer


Theorem bj-xpnzex

Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv (up to commutation in the product). (Contributed by BJ, 6-Oct-2018) (Proof modification is discouraged.)

Ref Expression
Assertion bj-xpnzex
|- ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) )

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 eleq1a
 |-  ( (/) e. _V -> ( B = (/) -> B e. _V ) )
3 1 2 ax-mp
 |-  ( B = (/) -> B e. _V )
4 3 a1d
 |-  ( B = (/) -> ( ( A X. B ) e. V -> B e. _V ) )
5 4 a1d
 |-  ( B = (/) -> ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) )
6 xpnz
 |-  ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) )
7 xpexr2
 |-  ( ( ( A X. B ) e. V /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) )
8 7 simprd
 |-  ( ( ( A X. B ) e. V /\ ( A X. B ) =/= (/) ) -> B e. _V )
9 8 expcom
 |-  ( ( A X. B ) =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) )
10 6 9 sylbi
 |-  ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) e. V -> B e. _V ) )
11 10 expcom
 |-  ( B =/= (/) -> ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) )
12 5 11 pm2.61ine
 |-  ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) )