| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | eleq1a |  |-  ( (/) e. _V -> ( B = (/) -> B e. _V ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( B = (/) -> B e. _V ) | 
						
							| 4 | 3 | a1d |  |-  ( B = (/) -> ( ( A X. B ) e. V -> B e. _V ) ) | 
						
							| 5 | 4 | a1d |  |-  ( B = (/) -> ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) ) | 
						
							| 6 |  | xpnz |  |-  ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) | 
						
							| 7 |  | xpexr2 |  |-  ( ( ( A X. B ) e. V /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 8 | 7 | simprd |  |-  ( ( ( A X. B ) e. V /\ ( A X. B ) =/= (/) ) -> B e. _V ) | 
						
							| 9 | 8 | expcom |  |-  ( ( A X. B ) =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) | 
						
							| 10 | 6 9 | sylbi |  |-  ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) e. V -> B e. _V ) ) | 
						
							| 11 | 10 | expcom |  |-  ( B =/= (/) -> ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) ) | 
						
							| 12 | 5 11 | pm2.61ine |  |-  ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) |