| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
eleq1a |
|- ( (/) e. _V -> ( B = (/) -> B e. _V ) ) |
| 3 |
1 2
|
ax-mp |
|- ( B = (/) -> B e. _V ) |
| 4 |
3
|
a1d |
|- ( B = (/) -> ( ( A X. B ) e. V -> B e. _V ) ) |
| 5 |
4
|
a1d |
|- ( B = (/) -> ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) ) |
| 6 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 7 |
|
xpexr2 |
|- ( ( ( A X. B ) e. V /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) ) |
| 8 |
7
|
simprd |
|- ( ( ( A X. B ) e. V /\ ( A X. B ) =/= (/) ) -> B e. _V ) |
| 9 |
8
|
expcom |
|- ( ( A X. B ) =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) |
| 10 |
6 9
|
sylbi |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( ( A X. B ) e. V -> B e. _V ) ) |
| 11 |
10
|
expcom |
|- ( B =/= (/) -> ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) ) |
| 12 |
5 11
|
pm2.61ine |
|- ( A =/= (/) -> ( ( A X. B ) e. V -> B e. _V ) ) |