Metamath Proof Explorer


Theorem xpexcnv

Description: A condition where the converse of xpex holds as well. Corollary 6.9(2) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)

Ref Expression
Assertion xpexcnv
|- ( ( B =/= (/) /\ ( A X. B ) e. _V ) -> A e. _V )

Proof

Step Hyp Ref Expression
1 dmexg
 |-  ( ( A X. B ) e. _V -> dom ( A X. B ) e. _V )
2 dmxp
 |-  ( B =/= (/) -> dom ( A X. B ) = A )
3 2 eleq1d
 |-  ( B =/= (/) -> ( dom ( A X. B ) e. _V <-> A e. _V ) )
4 1 3 syl5ib
 |-  ( B =/= (/) -> ( ( A X. B ) e. _V -> A e. _V ) )
5 4 imp
 |-  ( ( B =/= (/) /\ ( A X. B ) e. _V ) -> A e. _V )