Metamath Proof Explorer


Theorem xpexcnv

Description: A condition where the converse of xpex holds as well. Corollary 6.9(2) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)

Ref Expression
Assertion xpexcnv BA×BVAV

Proof

Step Hyp Ref Expression
1 dmexg A×BVdomA×BV
2 dmxp BdomA×B=A
3 2 eleq1d BdomA×BVAV
4 1 3 imbitrid BA×BVAV
5 4 imp BA×BVAV