Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
eleq1a |
⊢ ( ∅ ∈ V → ( 𝐵 = ∅ → 𝐵 ∈ V ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝐵 = ∅ → 𝐵 ∈ V ) |
4 |
3
|
a1d |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) ) |
5 |
4
|
a1d |
⊢ ( 𝐵 = ∅ → ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) ) ) |
6 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
7 |
|
xpexr2 |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
8 |
7
|
simprd |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ∈ V ) |
9 |
8
|
expcom |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) ) |
10 |
6 9
|
sylbi |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 × 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) ) |
11 |
10
|
expcom |
⊢ ( 𝐵 ≠ ∅ → ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) ) ) |
12 |
5 11
|
pm2.61ine |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) ) |