| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 |  | eleq1a | ⊢ ( ∅  ∈  V  →  ( 𝐵  =  ∅  →  𝐵  ∈  V ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝐵  =  ∅  →  𝐵  ∈  V ) | 
						
							| 4 | 3 | a1d | ⊢ ( 𝐵  =  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) ) | 
						
							| 5 | 4 | a1d | ⊢ ( 𝐵  =  ∅  →  ( 𝐴  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) ) ) | 
						
							| 6 |  | xpnz | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ↔  ( 𝐴  ×  𝐵 )  ≠  ∅ ) | 
						
							| 7 |  | xpexr2 | ⊢ ( ( ( 𝐴  ×  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ×  𝐵 )  ≠  ∅ )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 8 | 7 | simprd | ⊢ ( ( ( 𝐴  ×  𝐵 )  ∈  𝑉  ∧  ( 𝐴  ×  𝐵 )  ≠  ∅ )  →  𝐵  ∈  V ) | 
						
							| 9 | 8 | expcom | ⊢ ( ( 𝐴  ×  𝐵 )  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) ) | 
						
							| 10 | 6 9 | sylbi | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( 𝐴  ×  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) ) | 
						
							| 11 | 10 | expcom | ⊢ ( 𝐵  ≠  ∅  →  ( 𝐴  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) ) ) | 
						
							| 12 | 5 11 | pm2.61ine | ⊢ ( 𝐴  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝑉  →  𝐵  ∈  V ) ) |