Metamath Proof Explorer


Theorem bj-xpnzex

Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv (up to commutation in the product). (Contributed by BJ, 6-Oct-2018) (Proof modification is discouraged.)

Ref Expression
Assertion bj-xpnzex ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 eleq1a ( ∅ ∈ V → ( 𝐵 = ∅ → 𝐵 ∈ V ) )
3 1 2 ax-mp ( 𝐵 = ∅ → 𝐵 ∈ V )
4 3 a1d ( 𝐵 = ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) )
5 4 a1d ( 𝐵 = ∅ → ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) ) )
6 xpnz ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ )
7 xpexr2 ( ( ( 𝐴 × 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
8 7 simprd ( ( ( 𝐴 × 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ∈ V )
9 8 expcom ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) )
10 6 9 sylbi ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) )
11 10 expcom ( 𝐵 ≠ ∅ → ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) ) )
12 5 11 pm2.61ine ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝑉𝐵 ∈ V ) )