Metamath Proof Explorer


Theorem bj-xpexg2

Description: Curried (exported) form of xpexg . (Contributed by BJ, 2-Apr-2019)

Ref Expression
Assertion bj-xpexg2 ( 𝐴𝑉 → ( 𝐵𝑊 → ( 𝐴 × 𝐵 ) ∈ V ) )

Proof

Step Hyp Ref Expression
1 xpexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )
2 1 ex ( 𝐴𝑉 → ( 𝐵𝑊 → ( 𝐴 × 𝐵 ) ∈ V ) )