Metamath Proof Explorer


Theorem bj-xpnzexb

Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019)

Ref Expression
Assertion bj-xpnzexb ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝐵 ∈ V ↔ ( 𝐴 × 𝐵 ) ∈ V ) )

Proof

Step Hyp Ref Expression
1 bj-xpexg2 ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝐵 ∈ V → ( 𝐴 × 𝐵 ) ∈ V ) )
2 eldifsni ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → 𝐴 ≠ ∅ )
3 bj-xpnzex ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) )
4 2 3 syl ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) )
5 1 4 impbid ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝐵 ∈ V ↔ ( 𝐴 × 𝐵 ) ∈ V ) )