Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-xpnzexb | ⊢ ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝐵 ∈ V ↔ ( 𝐴 × 𝐵 ) ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-xpexg2 | ⊢ ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝐵 ∈ V → ( 𝐴 × 𝐵 ) ∈ V ) ) | |
| 2 | eldifsni | ⊢ ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → 𝐴 ≠ ∅ ) | |
| 3 | bj-xpnzex | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
| 5 | 1 4 | impbid | ⊢ ( 𝐴 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝐵 ∈ V ↔ ( 𝐴 × 𝐵 ) ∈ V ) ) |